Quick sizing guide for Microsoft Hyper-V R2 running on HP ProLiant servers

Technical white paper

Table of contents

Executive summary... 2
Solution definition.. 2
Sizing considerations... 3
Sizing examples.. 6
Appendix A: Adjusted Processor Values (APV) .. 9
Appendix B: Hyper-Threading Values (HTV) ... 10
Appendix C: Processor Percent Ceiling (PPC) values ... 11
Appendix D: Hyper-V R2 processor settings .. 12
Appendix E: Sizing considerations outside the scope of this paper ... 23
For more information.. 24
Executive summary

Sizing a physical server environment onto a Microsoft® Hyper-V R2 virtualized architecture can seem like a daunting task. While the actual process can be very complicated, there are steps you can take to better understand how to successfully accomplish it. This white paper discusses how to size a Hyper-V virtualized environment using the processor requirements of the physical legacy servers and the processor capacity of the new VM host servers. It focuses on Hyper-V R2 sizing from a generic or horizontal view, and does not focus on any specific application running on top of Hyper-V R2.

This information should be used as sizing guidance and is not a detailed blueprint for implementing a Hyper-V R2 architecture.

Additional Hyper-V R2 configuration recommendations, including a detailed server and storage bill of material (BOM), can be obtained by downloading and running the HP Sizer for Microsoft Hyper-V 2008 R2 located on the HP ActiveAnswers website.

Target audience: This paper is for a technical audience looking for guidance with Hyper-V R2 virtualization sizing using HP server technology. The reader should have a good technical understanding of the performance and capacity requirements of the physical server environment they intend to virtualize as well as a deep understanding of Hyper-V R2. For additional details about Hyper-V R2, refer to the HP ActiveAnswers website for Microsoft Hyper-V.

This white paper describes testing performed in April 2010.

Solution definition

A properly sized Hyper-V R2 virtualized architecture enables organizations to effectively consolidate older physical application servers onto fewer, more stable, well managed HP ProLiant server platforms. By combining the virtualization capabilities of Hyper-V R2, with the performance, power reduction, and server management features of ProLiant servers, customers get the best possible virtualization solution possible.
Consolidating physical legacy application servers onto virtualized host servers, running Hyper-V R2 VMs, allows an organization to utilize server resources more effectively. Knowing how many older, physical legacy servers can be consolidated onto fewer, virtualized ProLiant host servers is the focus of this paper.

Sizing considerations

Most applications running on a physical server do not use the full measure of that server’s processing capacity. Understanding the processor requirements of your current physical legacy servers is a requirement to properly size a Hyper-V R2 virtualized architecture. For example, with Hyper-V R2, you could, in theory, simultaneously run up to 384 VMs on a single host server. If you were to try and start all of them all at the same time however, the applications running on the VMs would probably have very poor performance because of inadequate processor resources. In order to prevent this from occurring, you should first identify your current physical server processor requirements, calculate the processor capacity of your new VM host servers and finally, fit the processor requirements of your current physical servers into the processor capacity of your new VM host servers:

1. **Identify the Processor Utilization Requirements of each physical legacy server to be virtualized:**
 A. Current “Average Processor Utilization” (APU)? (2%, 5%, 10%, 15%, etc.)
 (What is the average processor utilization of your current physical server?)
 B. Server “Processor Speed” (PSpeed)? (in GHz)
 (What is the processor speed of your current physical legacy server?)
C. Number of “Processor Sockets” (PSockets)?
 (How many processor sockets does your current physical legacy server have?)

D. Number of “Processor Cores” (PCores)? (per Processor Socket)
 (How many cores per processor socket does your current physical legacy server have?)

E. “Adjusted Processor Value” (APV)? (See Appendix A)
 (An estimated adjustment to account for the capabilities of older servers compared to newer servers.)

F. “Hyper-Thread Value” (HTV)? (See Appendix B)
 (An estimated adjustment to account for Hyper-Threading performance.)

G. Calculate “Legacy Server Processor Requirement” (LSPR)
 (This value is the processor requirement of your current physical legacy server.)
 \[
 \text{LSPR} = (\text{PSockets} \times \text{PCores} \times \text{PSpeed} \times \text{APV} \times \text{HTV} \times \text{APU})
 \]

H. Record the LSPR value for each physical legacy server to be virtualized. The LSPR values will be used, later, in the calculation to “Fit” the VMs onto the new host server.

 LSPR Calculation Example:
 \[
 \begin{align*}
 \text{APU} &= 25\% (0.25) \\
 \text{PSpeed} &= 2.00 \text{ (GHz)} \\
 \text{PSockets} &= 4 \\
 \text{PCores} &= 2 \\
 \text{APV} &= 65\% (0.65) \\
 \text{HTV} &= 130\% (1.3) \\
 \text{LSPR} &= (0.25 \times 2 \times 4 \times 2 \times 0.65 \times 1.3) = 3.38 \text{ (GHz)}
 \end{align*}
 \]

2. **Identify the Processing Capacity of the new host server:**
 A. Server “Processor Speed” (PSpeed)? (GHz)
 (What is the processor speed of your new host server?)

 B. Number of “Processor Sockets” (PSockets)?
 (How many processor sockets does your new host server have?)

 C. Number of “Processor Cores” (PCores)? (per Processor Socket)
 (How many cores per processor socket does your new host server have?)

 D. “Hyper-Thread Value” (HTV)? (See Appendix B)
 (An estimated adjustment to account for Hyper-Threading performance.)

 E. Set the “Processor Percent Ceiling” (PPC) value. (See Appendix C)
 (A user-defined limit on processor utilization. The default recommendation = 80%.)

 F. Calculate the “Host Server Processing Capacity” (HSPC):
 (Multiplying all these values will provide you with the processor capacity of the new VM host server.)
 \[
 \text{HSPC} = (\text{PSpeed} \times \text{PSockets} \times \text{PCores} \times \text{HTV} \times \text{PPC})
 \]
G. Record the HSPC value for each host server. The HSPC values will be used, later, in the calculation to “fit” the VMs onto the new host server.

HSPC Calculation Example 1: ProLiant Host Server with an Intel® Xeon® Chipset:

PSpeed = 3.0 (GHz)
PSockets = 2
PCores = 6
HTV = 1.8
PPC = 80% (0.80)

HSPC = (3 * 2 * 6 * 1.8 * 0.80) = 51.84 (GHz)

HSPC Calculation Example 2: ProLiant Host Server with an AMD Opteron™ Chipset:

PSpeed = 2.7 (GHz)
PSockets = 2
PCores = 12
HTV = 1.0
PPC = 80% (0.80)

HSPC = (2.7 * 2 * 12 * 1 * 0.80) = 51.84 (GHz)

3. **Fit the VMs onto the Host Servers:**

Assumptions:

A. Each physical legacy server is equal to one VM (using the LSPR values).
B. Each new VM host server is equal to one HSPC value.

Fitting methodologies: There are several ways to “fit” VMs across the host servers. This paper documents two very different fitting methods to demonstrate how the selected fitting method can affect the performance capabilities of the host servers. The first method fits the VMs onto the host servers sequentially without consideration of VM processor requirements. Once the first host server’s processor capacity has been reached, a second host server is added and the fitting process continues. This method usually leaves a good amount of unused processor capacity on the last server fitted. The second method attempts to balance the processor requirements of the VMs equally across the host servers. This method first identifies how many host servers are needed. It then fits the largest available VM onto the first host server. It next fits the smallest available VM onto the first host server. It repeats this process on the next host server, then the next host server, then on the next host server ... until all the VMs have been fitted. The remaining processor capacity for all the host servers is usually about the same for all host servers using this method.
Sizing examples

Use the following criteria for both fitting examples.

1. The calculated HSPC value of the new host server = 51.84
2. There are 20 physical legacy servers with 20 different LSPR values to virtualize:

<table>
<thead>
<tr>
<th>LSPR</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSPR1</td>
<td>3.38</td>
</tr>
<tr>
<td>LSPR6</td>
<td>3.18</td>
</tr>
<tr>
<td>LSPR11</td>
<td>1.91</td>
</tr>
<tr>
<td>LSPR16</td>
<td>4.19</td>
</tr>
<tr>
<td>LSPR2</td>
<td>2.98</td>
</tr>
<tr>
<td>LSPR7</td>
<td>2.87</td>
</tr>
<tr>
<td>LSPR12</td>
<td>4.91</td>
</tr>
<tr>
<td>LSPR17</td>
<td>2.53</td>
</tr>
<tr>
<td>LSPR3</td>
<td>4.10</td>
</tr>
<tr>
<td>LSPR8</td>
<td>3.65</td>
</tr>
<tr>
<td>LSPR13</td>
<td>3.60</td>
</tr>
<tr>
<td>LSPR18</td>
<td>3.46</td>
</tr>
<tr>
<td>LSPR4</td>
<td>5.67</td>
</tr>
<tr>
<td>LSPR9</td>
<td>4.55</td>
</tr>
<tr>
<td>LSPR14</td>
<td>2.54</td>
</tr>
<tr>
<td>LSPR19</td>
<td>1.98</td>
</tr>
<tr>
<td>LSPR5</td>
<td>2.89</td>
</tr>
<tr>
<td>LSPR10</td>
<td>2.10</td>
</tr>
<tr>
<td>LSPR15</td>
<td>3.05</td>
</tr>
<tr>
<td>LSPR20</td>
<td>5.88</td>
</tr>
</tbody>
</table>

Fitting Example 1: **Sequential fitting** (Fit them on in sequential order):
(Host server 1 = Black, Host server 2 = Red)

51.84 - 3.38 (LSPR1) = 48.46 (VM1 added to host server 1)
48.46 - 2.98 (LSPR2) = 45.48 (VM2 added to host server 1)
45.48 - 4.10 (LSPR3) = 41.38 (VM3 added to host server 1)
41.38 - 5.67 (LSPR4) = 35.71 (VM4 added to host server 1)
35.71 - 2.89 (LSPR5) = 32.82 (VM5 added to host server 1)
32.82 - 3.18 (LSPR6) = 29.64 (VM6 added to host server 1)
29.64 - 2.87 (LSPR7) = 26.77 (VM7 added to host server 1)
26.77 - 3.65 (LSPR8) = 23.12 (VM8 added to host server 1)
23.12 - 4.55 (LSPR9) = 18.57 (VM9 added to host server 1)
18.57 - 2.10 (LSPR10) = 16.47 (VM10 added to host server 1)
16.47 - 1.91 (LSPR11) = 14.56 (VM11 added to host server 1)
14.56 - 4.91 (LSPR12) = 9.65 (VM12 added to host server 1)
9.65 - 3.60 (LSPR13) = 6.05 (VM13 added to host server 1)
6.05 - 2.54 (LSPR14) = 3.51 (VM14 added to host server 1)
3.51 - 3.05 (LSPR15) = 0.46 (VM15 added to host server 1)
0.46 - 4.19 (LSPR16) = (WILL NOT FIT – Add new Host Server)

51.84 - 4.19 (LSPR16) = 47.65 (VM16 added to host server 2)
47.65 - 2.53 (LSPR17) = 45.12 (VM17 added to host server 2)
45.12 - 3.46 (LSPR18) = 41.66 (VM18 added to host server 2)
41.66 - 1.98 (LSPR19) = 39.68 (VM19 added to host server 2)
39.68 - 5.88 (LSPR20) = 33.80 (VM20 added to host server 2)

Finished – No more VMs (LSPR values) to fit.

This method gets the job done but while host server one’s processor capacity is fully utilized, host server two has quite a bit of capacity left that is unused. (There are 15 VMs on host server 1 while there are only 5 VMs on host server 2.)
Fitting Example 2: Fit the largest VM available, then the smallest VM available, across all the Host Servers:

1. Sum the LSPR values to determine how many host servers are required to fit all the VMs.
 A. LSPR SUM = 69.42 (From the 20 LSPR values above)
 B. HSPC = 51.84
 C. 69.42 / 51.84 = 1.34 (Need two host servers)

2. Fit the VMs onto the two host servers:
 (Host server 1 = Black, Host server 2 = Red)

 51.84 - 5.88 (LSPR20) = 45.96 (VM20 added to host server 1)
 45.96 - 1.91 (LSPR11) = 44.05 (VM11 added to host server 1)

 51.84 - 5.67 (LSPR4) = 46.17 (VM4 added to host server 2)
 46.17 - 1.98 (LSPR19) = 44.19 (VM19 added to host server 2)

 44.05 - 4.91 (LSPR12) = 39.14 (VM12 added to host server 1)
 39.14 - 2.10 (LSPR10) = 37.04 (VM10 added to host server 1)

 44.19 - 4.55 (LSPR9) = 39.64 (VM9 added to host server 2)
 39.64 - 2.53 (LSPR17) = 37.11 (VM17 added to host server 2)

 37.04 - 4.19 (LSPR16) = 32.85 (VM16 added to host server 1)
 32.85 - 2.54 (LSPR14) = 30.31 (VM14 added to host server 1)

 37.11 - 4.10 (LSPR3) = 33.01 (VM3 added to host server 2)
 33.01 - 2.87 (LSPR7) = 30.14 (VM7 added to host server 2)

 30.31 - 3.65 (LSPR8) = 26.66 (VM8 added to host server 1)
 26.45 - 2.89 (LSPR5) = 23.56 (VM5 added to host server 1)

 30.14 - 3.60 (LSPR13) = 26.54 (VM13 added to host server 2)
 26.54 - 2.98 (LSPR2) = 23.56 (VM2 added to host server 2)

 23.56 - 3.46 (LSPR18) = 20.1 (VM18 added to host server 1)
 20.1 - 3.05 (LSPR15) = 17.05 (VM15 added to host server 1)

 23.56 - 3.38 (LSPR1) = 20.18 (VM1 added to host server 2)
 20.18 - 3.18 (LSPR6) = 17.00 (VM6 added to host server 2)

Finished – No more VMs (LSPR values) to fit.
Please note that this fitting method better balances the VMs (LSPR values) across the two host servers. The remaining processor capacities for both servers are almost identical.

The above fitting methods assume that there are no Hyper-V VM processor reservation settings configured in such a way that would physically limit the number of VMs that can run on a host server. See Appendix D for additional information on setting Hyper-V R2 VM processor settings.
Appendix A: Adjusted Processor Values (APV)

The intent of this value is to adjust the measured performance of a given server to account for the expected better performance of newer, more current servers. The GHz to GHz performances of older servers are not going to be equal to that of current ProLiant server models. There are many reasons for this, but it can be expected that a current ProLiant server running at 3.0GHz is going to produce better results than that of an older server running at 3.0GHz. (3.0GHz is used here just as an example.) The APV might be seen as a subjective or estimated value, but it is important to include such a value during the sizing process in order to better size your older physical servers onto VMs running on top of current, better performing ProLiant server models.

APV guidance:

If the physical legacy servers to be virtualized are:

- Less than one year old the APV should be 100% (1.0)
- One to two years old the APV should be ~ 90% (0.90)
- Two to three years old the APV should be ~ 80% (0.80)
- Three to four years old the APV should be ~ 65% (0.65)
- Four to five years old the APV should be ~ 50% (0.50)
- Five to eight years old the APV should be ~ 35% (0.35)
- Older than eight years should use an APV = 15% (0.15)

The above percentages should be used as guidance and not as an absolute value to be used in all situations. There are many server technology factors that affect the system performance.
Appendix B: Hyper-Threading Values (HTV)

The Hyper-Threading Values are intended to adjust for the additional performance gained from using Hyper-Threading on Intel-chipset-based servers. While the guidance below is somewhat subjective, performance testing of such servers over the last several years has provided some basis for the recommendations listed below. While early implementations of Hyper-Threading did not produce consistent, linear performance scaling, late model ProLiant servers with Hyper-Threading turned on, did show significant performance scaling.

Note
This value only applies to Intel-chipset-based servers that have the Hyper-Threading feature turned on. If you have an Intel-chipset-based server with no Hyper-Threading, or an AMD chipset based server in your sizing, you can either ignore this value in the formula or use a value of 1.0.

General HTV guidance:
If the physical legacy servers to be virtualized are:

- Less than two years old the HTV should be 1.9 (Add 90%)
- Two to four years old the HTV should be 1.6 (Add 60%)
- Older than four years should use an HTV = 1.3 (Add 30%)
Appendix C: Processor Percent Ceiling (PPC) values

The Processor Percent Ceiling (PPC) is an adjustment value intended to cap the maximum CPU utilization at which a VM host server will run. HP recommends running a VM host server’s processor capabilities at no more than 70-80%. It is ultimately your decision at what value to set this to, however. Please be aware that setting this value to 100% (1.0) will eliminate any VM host server processor reserve, creating potential performance issues during peak performance times.
Appendix D: Hyper-V R2 processor settings

How an application, running on a Hyper-V R2 VM, consumes host server processor resources directly relates to the VM’s processor configuration settings. This section provides an explanation of each of these settings, with examples, to show how these settings affect VM performance.

Hyper-V R2 VM configuration settings are set from within the individual VM “Settings…” option. The Hyper-V R2 processor configuration settings are located under Hyper-V Manager – (specific VM) – Settings.

See Figures 2 and 3 below.

1 For the purposes of explaining Hyper-V R2 processor settings, this paper assumes all VMs will be configured identically.
Figure 3. Hyper-V R2 VM processor configurations setting screen
Number of logical processors setting: How many logical processors the VM will have configured is set here. Logical processors are representative of the processing capacity of the physical host server. For example: a two-socket server with quad-core AMD based processors would have eight logical processors for Hyper-V R2 to use. If the application hosted on the VM is a single threaded application, this should be set to equal one. If the application can take advantage of multiple processors in a physical server environment, change this setting to equal either two or four logical processors. As of the date this paper was written, Hyper-V R2 is only supporting up to four logical processors on a single VM. See Figure 4.

Virtual machine reserve (percentage) setting: Reserves a percentage of the host server’s processor capacity for this specific VM. This setting ensures that a set percentage of the host processor’s resources are reserved for this VM. The percent of processing capacity that is reserved when using this setting is directly related to the number of logical processors assigned to the VM in the previous step. For example, if the setting is configured to 100% on a system that has eight cores, Hyper-V R2 reserves 12% of the host processor resources. (100% / 8 cores * 1 logical processor = 12%). See Figure 4.

Figure 4. Number of logical processors set to 1 and Virtual machine reserve (percentage) set to 100%
If the number of logical processors is changed to = 2, then Hyper-V R2 will reserve 24% of the host processor resources. \((100\% / 8\text{ cores} * 2\text{ logical processors} = 24\%)\). See Figure 5.

Figure 5. Number of logical processors set to = 2 and Virtual machine reserve (percentage) set to 100%
If the number of logical processors is changed to 4, then Hyper-V R2 will reserve 48% of the host processor resources for this VM. (100% / 8 cores * 4 logical processor = 48%). See Figure 6.

Figure 6. Number of logical processors set to equal 4 and Virtual machine reserve (percentage) set to 100%
Following this example a bit further, setting the reserve to less than 100% has the effect of reserving less than 12% of total system processor resources for each core in this eight-core server. For example, if this setting is changed to = 50%, the total host server processor capacity reserved for this VM will be = 6%. (100% / 8 cores * 1 logical processor * 50% = 6%). See Figure 7.

Figure 7. Virtual machine reserve setting at 50%
Alternatively, if the virtual machine reserve is = zero (0), which is the default for this setting, Hyper-V R2 will not reserve any host server processor resources for this VM. Hyper-V R2 will assign processor resources dynamically, on demand. See Figure 8.

Figure 8. Virtual machine reserve set to equal zero

Consequences of using the “Virtual machine reserve (percentage):” setting:
- If this setting is set to “0”, the host server will dynamically assign processor resources to the VMs.
- If this setting is something other than “0”, the VM will be guaranteed a set percentage of the host server’s processor capacity. No other VM running on that host server can use this reserve.
- If this setting is something other than “0”, the total number of VMs that can be run simultaneously on the host server will be set to a specific number of VMs. The actual number that can be run simultaneously is in proportion to the “Virtual machine reserve (percentage):” value entered for all the VMs on a host server.
Example: (For the purpose of explaining this setting, assume all host server VMs are configured identically).

In the configuration example, below, as shown in Figure 9, the VM is assigned 1 logical processor and a Virtual machine reserve of 100%. In an eight-core host server, this has the effect of assigning each individual core 12% of the processor’s capacity. (You will notice that the “Percent of total system resources” is = to 12%.) If all the other VMs are configured identically, only eight VMs can be run simultaneously because each of the VMs has been guaranteed 12% processor capacity. If all are running, 96% of the host server’s processor capacity has been allocated. The next VM that tried to start would trigger an error because there is not enough processor capacity left to guarantee a reserve of 12%.

Figure 9. Virtual machine reserve limits number of VMs that can be run simultaneously
Virtual machine limit percentage setting: This is the maximum amount of the host server’s processor capacity that is available for the VM to use. This setting does not actually reserve any processor capacity for the VM but allows it to request up to the amount configured. In the example below, the Virtual machine reserve is set to 50%, which means that the VM is guaranteed 6% of the host server processor resources. With the Virtual Machine limit set to 100% however, the VM can request up to 12% of the host server processor resources which is 6% more than it has reserved for itself. That additional 6% is not guaranteed however. See Figure 10.

![Settings for Client001](image)

Figure 10. Virtual machine limit percentage set to 100
Relative weight setting: This setting can be used to ensure VMs running critical applications have a higher priority than other VMs running on a host server when there is contention for processor resources. The higher the value, the more processor cycles the VM will get when there is contention. See Figure 11.

Figure 11. Relative weight setting

![Relative weight setting](image)
Processor Functionality setting: This option should be used if the VM operating system is an older operating system such as Windows NT®. NT will not install on the VM without this option checked. See Figure 12.

Figure 12. Processor Functionality setting
Appendix E: Sizing considerations outside the scope of this paper

1. While the algorithms presented in this paper illustrate an effective means to distribute VMs based on processing requirements, you should also consider the amount of memory available to each of the configured VMs. Hyper-V R2 does not allow you to over commit host server memory so the memory requirements for each VM must be considered and individually configured during initial VM creation. The amount of memory configured for all VMs cannot exceed the amount of physical memory available on the host server. VMs with insufficient memory configured may result in poor application performance.

2. The algorithms presented in this paper also do not take into consideration the issue of a VM’s virtual CPU waiting on resources from the host server’s physical cores. This wait time normally occurs on VMs that have more than one virtual CPU configured and are running under heavy loads. It is possible that even though a host server has enough raw processor capacity to handle all the requirements of the configured VMs, the total number of physical cores could limit how many virtual CPUs can access them at any given time. A virtual CPU could wind up waiting for a physical core to become available thus creating a delay in processing instructions.

Example: Host server “A” is configured with 12 physical cores. Using the sizing methodology documented in this paper, you size four VMs onto that host server and configure them each with 4 virtual CPUs. With all the VMs running under heavy load, the 12 virtual CPUs configured in the first 3 VMs access the host server’s 12 physical cores for the processing resources they need without any contention. The 4 virtual CPUs associated with the fourth VM however, cannot access the host server’s physical cores because the host server’s 12 physical cores are busy servicing the 12 virtual CPUs associated with the first 3 VMs. This contention will result in wait time for the 4 virtual CPUs configured in the fourth VM.

One way to alleviate this issue is to maintain a virtual CPU to physical core ratio of 1:1. Setting the Virtual machine reserve to 100% for all configured VMs will limit the total number of virtual CPUs to the total number of physical cores available. While this will alleviate any contention the virtual CPUs will have accessing the physical cores, it will also have the effect of limiting the number of VMs you can simultaneously run on the host server. This essentially makes the process of deciding how many VMs to run on a host server almost a moot process as the number of VMs that can be run on a host server is now limited to the number of physical cores your host server has.

Setting the Virtual machine reserve to 100% on a host server with 12 physical cores limits you to a total of 12 virtual CPUs, for all of your VMs. Each virtual CPU will be guaranteed 8% of the host server’s total processor capacity. If all of your VMs are to be configured the same, your VM configuration options are limited to:

- 1 vCPU (Logical processor) configured = 12 VMs
- 2 vCPUs (Logical processors) configured = 6 VMs
- 3 vCPUs (Logical processors) configured = 4 VMs
- 4 vCPUs (Logical processors) configured = 3 VMs

See Appendix D for additional information on setting Hyper-V R2 VM processor settings.
For more information

Additional information on HP tools, solutions, software, and hardware can be found at:

HP ActiveAnswers (Technical white papers and sizing tools),
http://www.hp.com/solutions/activeanswers

How to buy HP offerings, http://www.hp.com/buy

To help us improve our documents, please provide feedback at